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ABSTRACT
1Training only one deep model for large-scale cross-scene
video foreground segmentation is challenging due to the off-
the-shelf deep learning based segmentor relies on scene-
specific structural information. This results in deep mod-
els that are scene-biased and evaluations that are scene-
influenced. In this paper, we integrate dual modalities
(foregrounds’ motion and appearance), and then eliminat-
ing features without representativeness of foreground through
attention-module-guided selective-connection structures. It is
in an end-to-end training manner and to achieve scene adap-
tation in the plug and play style. Experiments indicate the
proposed method significantly outperforms the state-of-the-
art deep models and background subtraction methods in un-
trained scenes – LIMU and LASIESTA. Source Code is avail-
able at: https://github.com/WeiZongqi/HOFAM

Index Terms— foreground segmentation, hierarchical
optical flow, cross-scene, attention model

1. INTRODUCTION

Video foreground segmentation aims at discovering the
visually distinctive moving foreground objects in a video, and
identifying all pixels covering these objects from background.
Video foreground segmentation model can serve as an impor-
tant pre-processing component for many applications, for ex-
amples, image and video compression [1], visual tracking [2]
and person re-identification [3]. However, in practice, train-
ing only one deep model for large-scale cross-scene video
foreground segmentation is still challenging issue, since the
off-the-shelf deep learning based segmentor relies on scene-
specific structural information. Smoothly adapting to new
scenes requires additional laborious annotation, training from
scratch or fine-tuning the model, otherwise the foreground,
especially the tiny ones will be false segmented.

1This work is supported by AI+ Project of NUAA (XZA20003), and Na-
tional Science Foundation of China (61772268).
Corresponding Author: Dong Liang

Fig. 1: The proposed foreground segmentation model. It
combines both static appearance features and motion infor-
mation, and integrates attention modules in the upsampling
process to fuse the features of encoder and decoder.

Traditional unsupervised foreground subtraction methods
[4, 5, 6] focus on building statistical model to suppress in-
terference of dynamic background but they have bottleneck
to achieve accurate background updating. Approach using
CNN to replace background subtraction were proposed in
[7, 8, 9, 10, 11]. All the aforementioned methods are scene-
specific and needs to be trained from scratch for other scenes.
DeepBS [12] and STAM [13] utilize a trained CNN to realize
foreground segmentation across video scenes. For the train-
ing data, it randomly select 5% samples with corresponding
ground truths of each subset from CDNet2014 dataset. The
cross-scene segmentation is often coarse that the boundary of
object and small object cannot be well preserved. Semantic
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segmentation methods have enabled remarkable progress due
to the development of convolutional neural networks. SOTA
methods include PSPNet [14], DeepLabV3+ [15], BFP [16]
and CCL [17]. Although semantic segmentation approaches
could provide high-level semantic annotation for each frame,
they ignore the temporal relevance and motion cues which are
quite important for video foreground segmentation.

Essentially, foreground segmentation is an empirical task
related to appearance, motion, and scene attributes. End-to-
end feature descriptor provides a path for effective blending
and fusion of appearance and motion features to filter mul-
tifarious foreground patterns across scene. Optical flow is
an instantaneous motion cue which is less robust and inad-
equate to describe motions in pixel level. In this paper, we
try to solve the following issues: 1) how to describe the fore-
ground more comprehensively in the scene 2) Can we realize
a plug and play foreground segmentation model without extra
training when use it even for a new scene. We solve these
issues by integrating more features from different modali-
ties (foregrounds’ motion and appearance), and then eliminat-
ing features without representativeness of foreground through
attention-module-guided selective-connection structures. The
proposed method is shown in Figure 1.

2. OUR WORK

2.1. Model structure

As shown in Figure 1, the proposed model combines both
static appearance features and motion information, and inte-
grates attention modules in the upsampling process to fuse the
features of encoder and decoder.

2.2. Hierarchical Optical Flow

As a instantaneous motion field, optical flow lacks stabil-
ity and sufficiency in representing motion. Optical flow from
long interval video frames has the long term motion cues of
the object but the outline of object is imprecise. Optical flow
calculated by short interval video frames has accurate mo-
tion cues of the current frame, but sometimes it is insufficient
to describe the whole moving object, such as the first optical
flow in Figure 1. Hierarchical Optical Flow (HOF), illustrated
in Figure 1 right, uses the current video frame and interval
frames with different lengths to calculate 3 optical flows. Hi-
erarchical frame interval to complement each other. The spe-
cific steps are as follows: The frame position at the current
time T , and frames at the time of T − τ1, T − τ2 and T − τ3
by setting the interval frame length parameters τ1, τ2 and τ3.
Lastly calculate the optical flow information at time T , which
is denoted as Op(τ1), Op(τ2) and Op(τ3). We merge three
optical flows with different frame interval into three channels
as hierarchical optical flow Hop(T ). We use a state of the art
deep model Selflow [18] to calculate optical flow.

Fig. 2: Attention module in proposed network. The decoding
is from the previous decoding layerDi−1 to the next layerDi.
The input parts are Ei and Opi and the previous layer Di−1

in the decoder. The output part is decoder layer Di.

2.3. Attention Module

The proposed model merges the decoder and encoder fea-
tures through a dense attention processes during the decoder
phase. In detail, high-level features provide global informa-
tion to guide attention modules to weight proper low-level
features contribute to prediction in the inputting image that
encoder features are re-weighted by the decoder layers in
pixel-level and concatenated with the latter.

In Figure 2, the decoding process is from the previous de-
coding layer Di−1 to the next layer Di. The input parts are
Ei and Opi and the previous layer Di−1 in the decoder. The
output part is decoder layer Di. In order to explain the op-
eration mechanism of attention module more clearly, we use
Bup sampling, Bw and Be op as the process stages. The spe-
cific process is as follows: Suppose we have obtained two fea-
ture map tensors Ei ∈ RH×W×C and Opi ∈ RH×W×C (H
and W are the height and width of a single feature map, and
C indicates the number of the feature map channels). In order
to get Di, firstly, we concatenate two kinds of corresponding
feature map Ei and Opi in two encoders. After concatenat-
ing, the channel becomes twice (2C) as much as the original
channel (C), and then Be op ∈ RH×W×C is obtained by con-
volution.

Be op = conv0(Relu(Ei‖Opi)) (1)

where conv0 means convolution of kernel 3×3 and step 1
used to extract appearance feature and reduce channels, ‖ is
the concatenation operator andRelu is the ReLU active func-
tions.

In decoding layer Di−1 ∈ RH/2×W/2×4C , do up sam-
pling convolution to get Bup sampling ∈ RH×W×C . Then,
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the weighted coefficient tensor Bw ∈ RH×W×C (between 0
and 1) is obtained by convolution and activation operation,

Bw = BN(σ(conv1(Relu(Bup sampling)))) (2)

where σ is the Sigmoid active functions, conv1 is convolu-
tion of kernel 3×3 and step 1 to learn weighted coefficient
and BN is batch normalization (BN). Then Bw is combined
with the feature map Be op by multiplying pixel by pixel to
obtain the weighted feature map (Atten result). This step is
the weighting operation of the decoder in attention module.

After batch normalization, we get original decoder feature
from Bup sampling. We also add Dropout operation to the
original decoder feature, and each node has a 50% probability
of being suppressed during the training process, and removes
this operation during the test process. The weighted encoder
feature map and the original decoder feature are concatenated
to get Di ∈ RH×W×2C in current decoding layer i.

Di = (Bw �Be op)‖BN(Dropout(Bup sampling)) (3)

where � is Hadamard product.

2.4. Loss Function

Focal Loss [19] are designed for solving the posi-
tive/negative unbalanced sample problem in RetinaNet for
object detection which is based on the binary cross entropy
function. We define an area ratio between the foreground and
background in one frame S(fg), and then define a balance
coefficient inside class β, which is shown as follows:

β = t3 min(
1

S(fg)
, 50) (4)

Where t3 is a hyper-parametric. The reason for setting the
minimum value of 1

S(fg) and 50 is to prevent the potential
scene from infinity, where 50 is the value set after sampling
the small object in the training scenes. The class-in scale fo-
cal (cisfocal) loss is,

Lcisfocal =

{
− βα(1− p)γ log(p) y = 1

− (1− α)pγ log(1− p) y = 0
(5)

where p represents the probability of model prediction, with
foreground label y = 1 and background label y = 0. α is the
parameter matrix of foreground and background pixel sam-
ples. γ is the parameter regulating the contribution of hard
and easy samples. For the hard sample case, it will get a
lower p. In order to train model stably, Manhattan distance
l1 loss is also used as regularization in the training process.
It is measured between the predicted p and ground truth y,
Ll1 = ||p − y||1. The final loss function can be expressed as
follows:

L = t1Lcisfocal + t2Ll1 (6)

3. EXPERIMENT

In this section, we evaluate the proposed network for fore-
ground segmentation on three benchmark datasets, namely
CDNet 2014 [20], LIMU [21] and LASIESTA [22]. Quanti-
tative results in terms of average F-measure and visual results
are evaluated and verified with the state-of-the-art methods.

3.1. Data Preparation and Experiment Setting

Following the training setting in DeepBS [12], for the
training data, we randomly select 5% samples with their
ground truths of each subset from CDNet 2014 to train HO-
FAM. The left 95% of samples in CDNet 2014 are used to test
the model, without any overlap of the training set. Segmented
foreground is obtained without any post-processing.

We have done a lot of experiments for hyper parameters
tuning in advance and compare many different settings. For
hierarchical optical flow in the experiment, we set τ1 = 1,
τ2 = 5 and τ3 = 10. In the loss function, and finally set
t1 = 0.8, t2 = 0.2, t3 = 0.25, α = 0.75, γ = 0. The training
batch size is 16, and we train 16000 epochs in all. Adam
is used as the optimizer and its beta1 = 0.95, beta2 = 0.999.
Learning rate is set to a small value of 5× 10−5.

For methods for comparison, we divide them in to
three folds: (1) cross-scene deep models (single model),
(2) specific-scence models (including deep model and back-
ground subtraction methods), and (3) semantic segmenta-
tion models. For cross-scene deep models, STAM [13]
and DeepBS [12] trained as the same way as HOFAM. We
also compare the model without Attention (HOFAMnoAtt)
or Optical flow (HOFAMnoOp). For semantic segmenta-
tion models, DeepLabV3+ [15] and PSPNet [14] train in
ADE20K [23], because there is no semantic annotation in
CDNet2014. We define some classes as foreground accord-
ing to the protocol recommended in [24], including {person,
car, cushion, box, book, boat, bus, truck, bottle, van, bag and
bicycle}.

Precision, Recall and F-measure for segmentation are
pixel-level evaluation that accumulate all the positive and neg-
ative pixels in all tested frames, but ignore the scale of fore-
ground, which is unfair to small foreground evaluation. In or-
der to more fairly evaluate the results of foreground segmen-
tation of small sizes, we additionally supplement an metric
based on dice coefficient as follows:

Mean Dice =
2

N

N∑
i=1

(TP + FN)i∩(TP + FP )i
(TP + FN)i∪(TP + FP )i

(7)

Where N is the number of frames that contains foreground,
(TP + FN)i is the truth label in frame i, (TP + FP )i is the
prediction result in frame i.
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Op[τ1] Op[τ2] Op[τ3] Attention Losscisfocal Lossfocal Lossl1 F-measure Mean Dice
1 X X X X X X 0.9776 0.9466
2 X X X X X 0.9704 0.9416
3 X X X X 0.9642 0.9368
4 X X X X X X 0.9730 0.9408
5 X X X X X 0.9735 0.9423
6 X X X X X 0.9706 0.9385
7 X X X X X 0.9661 0.9334
8 X X X 0.9030 0.8705
9 X X X X X 0.8791 0.8502

Table 1: ABLATION EXPERIMENT ON CDNet 2014

3.2. Ablation Experiments on CDNet 2014

In the ablation experiments, we verify the hierarchi-
cal optical flow, attention module, and loss function class-
in scale focal loss to focal loss with related combinations.

Fig. 3: Hierarchical optical flow and foreground segmentation
results.

From Table 1, compared with model just using adjacent
optical flow, hierarchical optical flow have obvious improve-
ment in F-measure and Mean Dice. From Figure 3, hierarchi-
cal optical flow (orange border) fusing 3 different optical flow
provides more sufficient motion cues to guide the foreground
segmentation.

Fig. 4: Visualization of attention module.

From Table 1, compared with model without using atten-
tion module, attention module brings obvious improvement in
F-measure and Mean Dice. From Figure 4, we visualize the
process results of the seventh attention module (Att7) in de-
coder. Because the proposed attention module involves multi-
layer and multi-channel processes, it is difficult to visualize
the process of attention directly and accurately through two-
dimensional images. We average the results of one layer to
reveal this trend roughly. From comparison between Atten re-
sult(Att7), attention module highlights the area of foreground
object. Bw and Be op are the intermediate steps to get Atten
result. In the result of Bw(Att7) and Be op(Att7), it seem that
Bw and Be op present more original feature distributions of
decoder and encoder with uncertainties and biases on appear-
ance and optical flow.

Fig. 5: Comparison results of foreground segmentation of
small objects with different losses.

We also compare the results of three different loss func-
tion singly. Compared with focal + l1 loss, cisfocal +
l1 loss has obvious improvement and get the best scores in
F-measure and Mean Dice. In particular, the improvement of
Mean Dice is more obvious. From Figure 5, the proposed loss
have better performance of small objects. We use color green
and red to mark the false positive and false negative.
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Method Mean Dice ↑ Recall↑ Precision ↑ F-measure↑ Model Types
HOFAM 0.9466 0.9661 0.9893 0.9776

HOFAMnoAtt 0.8502 0.8369 0.9268 0.8795
HOFAMnoOp 0.87055 0.9297 0.8789 0.9036 Cross-scene
DeepBS [12] 0.7041 0.7545 0.8332 0.7548
STAM [13] 0.9452 0.9458 0.9851 0.9651

Cascade CNN [8] 0.8947 0.9506 0.8997 0.9209 Specific-scene
FgSegNet [25] 0.5738 0.6073 0.6235 0.6094 deep model

GMM [26] 0.5361 0.6846 0.6025 0.5707 Specific-scene
CPB [27] 0.6157 0.7049 0.6223 0.6325 background subtraction

SuBSENSE [28] 0.6843 0.8124 0.7509 0.7408

Table 2: AVERAGE PERFORMANCE COMPARISON OF
DIFFERENT METHODS ON CDNET 2014.

3.3. Results and Evaluation on CDNet 2014

Since the method proposed in this paper are trained on this
dataset, the purpose of this experiment is not to test the capa-
bility of cross-scene segmentation, but to test the proposed
single model compared with specific scenes. From Table 2, it
can be seen from this result that even a single model trained
using only 5% of the training data of all scenes, the perfor-
mance of this method still exceeds deep models and back-
ground subtraction models with specific-scene training.

3.4. Cross-Scene Segmentation Results on LIMU and
LASIESTA

For cross-scene testing, LIMU [21] and LASIESTA [22]
dataset are used to verify foreground segmentation in cross
scene. On LIMU, from Table 3, HOFAM presents a better
performance on two subsets than other models. On subset of
CameraParameter, PSPNet has better results on person seg-
mentation, and HOFAM ranks second with 0.7979. In over-
all, HOFAM gains the best performance of F-measure 0.7981
while PSPNet ranks second with 0.7506, and STAM ranks
third with 0.7344. We visualize the results in Figure 6.

Fig. 6: Comparison on cross-scene dataset LIMU. Each col-
umn has five images and there are video frame, segmented
results of HOFAM, PSPNet, DeepLabV3+ and STAM, from
left to right. Green: False Positive, Red: False Negative.

On LASIESTA, from Table 4, outdoor Moving camera
(O MC), outdoor Cloudy conditions (O CL), indoor Occlu-
sions (I OC) and indoor Moving camera (I MC), are showed.
In overall, HOFAM gains the best performance of F-measure

Method CameraParameter Intersection LightSwitch Overall Model Types
HOFAM 0.7979 0.7851 0.8493 0.7981

HOFAMnoAtt 0.6998 0.7364 0.7965 0.7291
HOFAMnoOp 0.7055 0.7294 0.6981 0.7130 Cross-scene
DeepBS [12] 0.6705 0.5545 0.6332 0.6073 training
STAM [13] 0.7742 0.6749 0.7163 0.7344 on CDnet 2014

Cascade CNN [8] 0.1025 0.0453 0.0277 0.0585
FgSegNet [25] 0.2668 0.1428 0.0414 0.1503

GMM [26] 0.6372 0.6423 0.6743 0.6519 Specific-scene
CPB [27] 0.6545 0.6778 0.6633 0.6652 background subtraction

SuBSENSE [28] 0.6744 0.6530 0.6934 0.6753
PSPNet [15] 0.8656 0.1303 0.6510 0.7506 Semantic

DeepLabV3+ [14] 0.7739 0.6766 0.3330 0.6986 training on ADE20k

Table 3: F-MEASURE ON LIMU.

Fig. 7: Comparison of on cross-scene dataset LASIESTA.

Method O MC O CL I OC I MC Overall Model Types
HOFAM 0.6919 0.8602 0.8456 0.7895 0.8072

HOFAMnoAtt 0.5518 0.6364 0.7067 0.5683 0.6148
HOFAMnoOp 0.5656 0.6637 0.6883 0.6030 0.6312 Cross-scene
DeepBS [12] 0.7020 0.7673 0.6758 0.5911 0.6774 training
STAM [13] 0.6365 0.7624 0.7362 0.6735 0.6807 on CDnet2014

Cascade CNN [8] 0.1028 0.1414 0.1155 0.1799 0.1288
FgSegNet [25] 0.1539 0.1687 0.4923 0.4306 0.2447

GMM [26] 0.3125 0.8027 0.7746 0.2513 0.4527 Specific-scene
CPB [27] 0.2910 0.8407 0.8095 0.0641 0.4304 background subtraction

SuBSENSE [28] 0.3029 0.8327 0.7412 0.1164 0.4425
PSPNet [15] 0.1652 0.3533 0.9281 0.7086 0.3723 Semantic

DeepLabV3+ [14] 0.1675 0.2319 0.8294 0.8276 0.3395 training on ADE20k

Table 4: F-MEASURE ON LASIESTA.

0.8072 while STAM ranks second with 0.6807. On outdoor
subsets, HOFAM has much higher F-measure than PSPNet
and DeepLabV3+. Figure 7 demonstrates the visualized re-
sults. The test speed of HOFAM is 5.33 fps for the frame size
256 by 256 on two GTX2080TI with 32 GB RAM, i9 CPU
and Ubuntu 16.04 LTS operating system. The entire network
uses deep learning framework of Tensorflow 1.13 version.

Conclusions

We propose a Hierarchical Optical Flow Attention Model
for cross-scene foreground segmentation to realize cross-
scene foreground segmentation task with practical signifi-
cance. Comparing with the state-of-the-art cross-scene deep
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models, specific-scence deep model, background subtraction
methods and semantic segmentation models on LIMU and
LASIESTA benchmarks indicates its promising generaliza-
tion capability of the scene without any additional train-
ing. Although with dual input, the framework realizes single
model and end-to-end training. Future work would be to use
self-supervised learning to explore the attention models for
specific training scenarios.
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